Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cancer Immunol Res ; 11(10): 1414-1431, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540802

RESUMEN

Nuclear receptor coactivator 2 (Ncoa2) is a member of the Ncoa family of coactivators, and we previously showed that Ncoa2 regulates the differentiation of induced regulatory T cells. However, it remains unknown if Ncoa2 plays a role in CD8+ T-cell function. Here, we show that Ncoa2 promotes CD8+ T cell-mediated immune responses against tumors by stimulating T-cell activation via upregulating PGC-1α expression to enhance mitochondrial function. Mice deficient in Ncoa2 in T cells (Ncoa2fl/fl/CD4Cre) displayed defective immune responses against implanted MC38 tumors, which associated with significantly reduced tumor-infiltrating CD8+ T cells and decreased IFNγ production. Consistently, CD8+ T cells from Ncoa2fl/fl/CD4Cre mice failed to reject tumors after adoptive transfer into Rag1-/- mice. Further, in response to TCR stimulation, Ncoa2fl/fl/CD4Cre CD8+ T cells failed to increase mitochondrial mass, showed impaired oxidative phosphorylation, and had lower expression of PGC-1α, a master regulator of mitochondrial biogenesis and function. Mechanically, T-cell activation-induced phosphorylation of CREB triggered the recruitment of Ncoa2 to bind to enhancers, thus, stimulating PGC-1α expression. Forced expression of PGC-1α in Ncoa2fl/fl/CD4Cre CD8+ T cells restored mitochondrial function, T-cell activation, IFNγ production, and antitumor immunity. This work informs the development of Ncoa2-based therapies that modulate CD8+ T cell-mediated antitumor immune responses.


Asunto(s)
Mitocondrias , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Regulación hacia Arriba
2.
Br J Cancer ; 129(3): 444-454, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386138

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS: In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS: The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION: In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas Portadoras , Arginina/metabolismo , Ribosomas , Línea Celular Tumoral
3.
J Biomed Sci ; 30(1): 32, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217939

RESUMEN

BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS: Our research identified eIF2α, eIF2ß, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.


Asunto(s)
Arginina , Factor 2 Eucariótico de Iniciación , Hemo-Oxigenasa 1 , Antioxidantes , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Hemo-Oxigenasa 1/genética , Homeostasis , Especies Reactivas de Oxígeno/metabolismo , Humanos
4.
Cell Rep ; 42(4): 112296, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36961817

RESUMEN

The arginine dependency of cancer cells creates metabolic vulnerability. In this study, we examine the impact of arginine availability on DNA replication and genotoxicity resistance. Using DNA combing assays, we find that limiting extracellular arginine results in the arrest of cancer cells at S phase and a slowing or stalling of DNA replication. The translation of new histone H4 is arginine dependent and influences DNA replication. Increased proliferating cell nuclear antigen (PCNA) occupancy and helicase-like transcription factor (HLTF)-catalyzed PCNA K63-linked polyubiquitination protect arginine-starved cells from DNA damage. Arginine-deprived cancer cells display tolerance to genotoxicity in a PCNA K63-linked polyubiquitination-dependent manner. Our findings highlight the crucial role of extracellular arginine in nutrient-regulated DNA replication and provide potential avenues for the development of cancer treatments.


Asunto(s)
Daño del ADN , Histonas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Histonas/metabolismo , Ubiquitinación , Replicación del ADN
5.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778247

RESUMEN

The unique arginine dependencies of cancer cell proliferation and survival creates metabolic vulnerability. Here, we investigate the impact of extracellular arginine availability on DNA replication and genotoxic resistance. Using DNA combing assays, we find that when extracellular arginine is limited, cancer cells are arrested at S-phase and DNA replication forks slow or stall instantly until arginine is re-supplied. The translation of new histone H4 is arginine-dependent and impacts DNA replication and the expression of newly synthesized histone H4 is reduced in the avascular nutrient-poor breast cancer xenograft tumor cores. Furthermore, we demonstrate that increased PCNA occupancy and HLTF-catalyzed PCNA K63-linked polyubiquitination protects arginine-starved cells from hydroxyurea-induced, DNA2-catalyzed nascent strand degradation. Finally, arginine-deprived cancer cells are tolerant to genotoxic insults in a PCNA K63-linked polyubiquitination-dependent manner. Together, these findings reveal that extracellular arginine is the "linchpin" for nutrient-regulated DNA replication. Such information could be leveraged to expand current modalities or design new drug targets against cancer.

6.
Cell Death Dis ; 14(1): 53, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681663

RESUMEN

Obesity is a risk factor in various types of cancer, including breast cancer. The disturbance of adipose tissue in obesity highly correlates with cancer progression and resistance to standard treatments such as chemo- and radio-therapies. In this study, in a syngeneic mouse model of triple-negative breast cancer (TNBC), diet-induced obesity (DIO) not only promoted tumor growth, but also reduced tumor response to radiotherapy. Serpine1 (Pai-1) was elevated in the circulation of obese mice and was enriched within tumor microenvironment. In vitro co-culture of human white adipocytes-conditioned medium (hAd-CM) with TNBC cells potentiated the aggressive phenotypes and radioresistance of TNBC cells. Moreover, inhibition of both cancer cell autonomous and non-autonomous SERPINE1 by either genetic or pharmacological strategy markedly dampened the aggressive phenotypes and radioresistance of TNBC cells. Mechanistically, we uncovered a previously unrecognized role of SERPINE1 in DNA damage response. Ionizing radiation-induced DNA double-strand breaks (DSBs) increased the expression of SERPINE1 in cancer cells in an ATM/ATR-dependent manner, and promoted nuclear localization of SERPINE1 to facilitate DSB repair. By analyzing public clinical datasets, higher SERPINE1 expression in TNBC correlated with patients' BMI as well as poor outcomes. Elevated SERPINE1 expression and nuclear localization were also observed in radioresistant breast cancer cells. Collectively, we reveal a link between obesity and radioresistance in TNBC and identify SERPINE1 to be a crucial factor mediating obesity-associated tumor radioresistance.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Reparación del ADN , Obesidad/genética , Obesidad/complicaciones , Roturas del ADN de Doble Cadena , Microambiente Tumoral , Inhibidor 1 de Activador Plasminogénico/genética
7.
Theranostics ; 12(13): 6038-6056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966597

RESUMEN

Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.


Asunto(s)
Glutamina , Neoplasias de las Glándulas Salivales , Animales , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Linfocitos T CD8-positivos , Ratones , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Microambiente Tumoral
9.
Cells ; 11(7)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406686

RESUMEN

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Asunto(s)
Células Epiteliales Alveolares , Surfactantes Pulmonares , Células Epiteliales Alveolares/metabolismo , Células Epiteliales/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
10.
FASEB J ; 36(3): e22201, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35137449

RESUMEN

Oncogene activation, massive proliferation, and increased nutrient demands often result in nutrient and oxygen deprivation in solid tumors including breast cancer (BC), leading to the induction of oxidative stress and endoplasmic reticulum (ER) stress, and subsequently triggering integrated stress response (ISR). To elucidate the role of long non-coding RNAs (lncRNAs) in the ISR of BC, we performed transcriptome analyses and identified a lncRNA, UBA6-AS1, which was upregulated upon amino acid deprivation and ER stress. UBA6-AS1 was preferentially induced in triple-negative BC (TNBC) cells deprived of arginine or glutamine, two critical amino acids required for cancer cell growth, or treated with ER stress inducers. Mechanistically, UBA6-AS1 was regulated through the GCN2/eIF2α/ATF4 pathway, one of the major routes mediating ISR in amino acid sensing. In addition, both in vitro and in vivo assays indicated that UBA6-AS1 promoted TNBC cell survival when cells encountered metabolic stress, implicating a regulatory role of UBA6-AS1 in response to intratumoral metabolic stress during tumor progression. Moreover, PARP1 expression and activity were positively regulated by the GCN2/UBA6-AS1 axis upon amino acid deprivation. In conclusion, our data suggest that UBA6-AS1 is a novel lncRNA regulating ISR upon metabolic stress induction to promote TNBC cell survival. Furthermore, the GCN2-ATF4 axis is important for UBA6-AS1 induction to enhance PARP1 activity and could serve as a marker for the susceptibility of PARP inhibitors in TNBC.


Asunto(s)
Aminoácidos/deficiencia , Estrés del Retículo Endoplásmico , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Serina-Treonina Quinasas/genética , ARN sin Sentido , Neoplasias de la Mama Triple Negativas/genética
11.
Cell Rep ; 38(4): 110284, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081341

RESUMEN

Macrophages display phenotypic plasticity and can be induced by hepatitis B virus (HBV) to undergo either M1-like pro-inflammatory or M2-like anti-inflammatory polarization. Here, we report that M1-like macrophages stimulated by HBV exhibit a strong HBV-suppressive effect, which is diminished in M2-like macrophages. Transcriptomic analysis reveals that HBV induces the expression of interleukin-1ß (IL-1ß) in M1-like macrophages, which display a high oxidative phosphorylation (OXPHOS) activity distinct from that of conventional M1-like macrophages. Further analysis indicates that OXPHOS attenuates the expression of IL-1ß, which suppresses the expression of peroxisome proliferator-activated receptor α (PPARα) and forkhead box O3 (FOXO3) in hepatocytes to suppress HBV gene expression and replication. Moreover, multiple HBV proteins can induce the expression of IL-1ß in macrophages. Our results thus indicate that macrophages can respond to HBV by producing IL-1ß to suppress HBV replication. However, HBV can also metabolically reprogram macrophages to enhance OXPHOS to minimize this host antiviral response.


Asunto(s)
Proteína Forkhead Box O3/inmunología , Hepatitis B/inmunología , Interleucina-1beta/inmunología , Macrófagos/inmunología , Macrófagos/virología , PPAR gamma/inmunología , Animales , Regulación hacia Abajo , Proteína Forkhead Box O3/metabolismo , Virus de la Hepatitis B , Interacciones Huésped-Patógeno/inmunología , Humanos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Replicación Viral/inmunología
12.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298755

RESUMEN

Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.

13.
Theranostics ; 11(15): 7527-7545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158865

RESUMEN

Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.


Asunto(s)
Arginina/deficiencia , Cromatina/metabolismo , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Cromatina/genética , Cromatina/patología , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Nucleotidiltransferasas/genética , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
14.
Nat Commun ; 12(1): 2398, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893278

RESUMEN

Arginine plays diverse roles in cellular physiology. As a semi-essential amino acid, arginine deprivation has been used to target cancers with arginine synthesis deficiency. Arginine-deprived cancer cells exhibit mitochondrial dysfunction, transcriptional reprogramming and eventual cell death. In this study, we show in prostate cancer cells that arginine acts as an epigenetic regulator to modulate histone acetylation, leading to global upregulation of nuclear-encoded oxidative phosphorylation (OXPHOS) genes. TEAD4 is retained in the nucleus by arginine, enhancing its recruitment to the promoter/enhancer regions of OXPHOS genes and mediating coordinated upregulation in a YAP1-independent but mTOR-dependent manner. Arginine also activates the expression of lysine acetyl-transferases and increases overall levels of acetylated histones and acetyl-CoA, facilitating TEAD4 recruitment. Silencing of TEAD4 suppresses OXPHOS functions and prostate cancer cell growth in vitro and in vivo. Given the strong correlation of TEAD4 expression and prostate carcinogenesis, targeting TEAD4 may be beneficially used to enhance arginine-deprivation therapy and prostate cancer therapy.


Asunto(s)
Arginina/farmacología , Proteínas de Unión al ADN/genética , Epigénesis Genética/efectos de los fármacos , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Musculares/genética , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias de la Próstata/genética , Factores de Transcripción/genética , Animales , Arginina/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo
15.
Theranostics ; 11(8): 3624-3641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664852

RESUMEN

Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.


Asunto(s)
Arginina/deficiencia , Hidrolasas/farmacología , Polietilenglicoles/farmacología , Animales , Argininosuccinato Sintasa/deficiencia , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Terapia Molecular Dirigida , Medicina de Precisión , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Transducción de Señal , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
16.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33491667

RESUMEN

To date, there are no inhibitors that directly and specifically target activated STAT3 and c-Myc in the clinic. Although peptide-based inhibitors can selectively block activated targets, their clinical usage is limited because of low cell penetration and/or serum stability. Here, we generated cell-penetrating acetylated (acet.) STAT3, c-Myc, and Gp130 targeting peptides by attaching phosphorothioated (PS) polymer backbone to peptides. The cell-penetrating peptides efficiently penetrated cells and inhibited activation of the intended targets and their downstream genes. Locally or systemically treating tumor-bearing mice with PS-acet.-STAT3 peptide at low concentrations effectively blocked STAT3 in vivo, resulting in significant antitumor effects in 2 human xenograft models. Moreover, PS-acet.-STAT3 peptide penetrated and activated splenic CD8+ T cells in vitro. Treating immune-competent mice bearing mouse melanoma with PS-acet.-STAT3 peptide inhibited STAT3 in tumor-infiltrating T cells, downregulating tumor-infiltrating CD4+ T regulatory cells while activating CD8+ T effector cells. Similarly, systemic injections of the cell-penetrating c-Myc and Gp130 peptides prevented pancreatic tumor growth and induced antitumor immune responses. Taken together, we have developed therapeutic peptides that effectively and specifically block challenging cancer targets, resulting in antitumor effects through both direct tumor cell killing and indirectly through antitumor immune responses.


Asunto(s)
Antineoplásicos/farmacología , Péptidos de Penetración Celular/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Acetilación , Animales , Antineoplásicos/química , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Receptor gp130 de Citocinas/química , Diseño de Fármacos , Células HCT116 , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/farmacología , Factor de Transcripción STAT3/química , Ensayos Antitumor por Modelo de Xenoinjerto
17.
iScience ; 23(2): 100839, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32058954

RESUMEN

The epidemiological association between disrupted circadian rhythms and metabolic diseases is implicated in increased risk of human breast cancer and poor therapeutic outcomes. To define a metabolic phenotype and the underlying molecular mechanism, we applied chronic insulin treatment (CIT) to an in vitro model of triple-negative breast cancer to directly address how BMAL1, a key circadian transcription factor, regulates cancer cell respiration and governs tumor progression. At the cellular level, BMAL1 suppresses the flexibility of mitochondrial substrate usage and the pyruvate-dependent mitochondrial respiration induced by CIT. We established an animal model of diet-induced obesity/hyperinsulinemia and observed that BMAL1 functions as a tumor suppressor in obese, but not lean, mice. Downregulation of BMAL1 is associated with higher risk of metastasis in human breast tumors. In summary, loss of BMAL1 in tumors confers advantages to cancer cells in both intrinsic mitochondrial metabolism and extrinsic inflammatory tumor microenvironment during pre-diabetic obesity/hyperinsulinemia.

18.
Epigenetics Chromatin ; 12(1): 44, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315653

RESUMEN

BACKGROUND: Hyperinsulinemia, the presence of excess insulin relative to glucose in the blood, is considered to be a poor prognostic indicator for patients with triple-negative breast cancer (TNBC). mTOR, a downstream effector of insulin, enhances mitochondrial biogenesis and activity, thereby increasing acetyl-CoA precursors. Increased acetyl-CoA can, in turn, be utilized by nuclear acetyltransferases for histone acetylation, a critical feature of genome regulation. While signaling pathways downstream of insulin have been established for sometime, the effect of insulin on chromatin remains unclear. We hypothesized that hyperinsulinemia-induced metabolic changes lead to genome-wide changes in histone acetylation in TNBC. RESULTS: MDA-MB-231 cells were xenografted into hyperinsulinemic and wild-type mice. Tumors in the hyperinsulinemic mice displayed elevated levels of histone acetylation compared to tumors in normal insulin conditions. We show that insulin treatment in vitro leads to global increase in chromatin-associated histone acetylation, in particular at H3K9, through the PI3K/AKT/mTOR pathway. Genome-wide analyses revealed that most promoter regions have an increase in histone acetylation upon insulin treatment. In addition, insulin induces higher levels of reactive oxygen species and DNA damage foci in cells. CONCLUSIONS: These results demonstrate the impact of hyperinsulinemia on altered gene regulation through chromatin and the importance of targeting hyperinsulinemia-induced processes that lead to chromatin dysfunction in TNBC.


Asunto(s)
Histonas/sangre , Hiperinsulinismo/sangre , Neoplasias de la Mama Triple Negativas/sangre , Acetilación , Animales , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Drosophila , Femenino , Estudio de Asociación del Genoma Completo , Xenoinjertos , Histona Acetiltransferasas/sangre , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Insulina/sangre , Insulina/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
19.
Cancer Immunol Res ; 7(5): 759-772, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890531

RESUMEN

Improvements in the quality and fitness of chimeric antigen receptor (CAR)-engineered T cells, through CAR design or manufacturing optimizations, could enhance the therapeutic potential of CAR-T cells. One parameter influencing the effectiveness of CAR-T cell therapy is the differentiation status of the final product: CAR-T cells that are less-differentiated and less exhausted are more therapeutically effective. In the current study, we demonstrate that CAR-T cells expanded in IL15 (CAR-T/IL15) preserve a less-differentiated stem cell memory (Tscm) phenotype, defined by expression of CD62L+CD45RA+ CCR7+, as compared with cells cultured in IL2 (CAR-T/IL2). CAR-T/IL15 cells exhibited reduced expression of exhaustion markers, higher antiapoptotic properties, and increased proliferative capacity upon antigen challenge. Furthermore, CAR-T/IL15 cells exhibited decreased mTORC1 activity, reduced expression of glycolytic enzymes and improved mitochondrial fitness. CAR-T/IL2 cells cultured in rapamycin (mTORC1 inhibitor) shared phenotypic features with CAR-T/IL15 cells, suggesting that IL15-mediated reduction of mTORC1 activity is responsible for preserving the Tscm phenotype. CAR-T/IL15 cells promoted superior antitumor responses in vivo in comparison with CAR-T/IL2 cells. Inclusion of cytokines IL7 and/or IL21 in addition to IL15 reduced the beneficial effects of IL15 on CAR-T phenotype and antitumor potency. Our findings show that IL15 preserves the CAR-T cell Tscm phenotype and improves their metabolic fitness, which results in superior in vivo antitumor activity, thus opening an avenue that may improve future adoptive T-cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Interleucina-15/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Células Madre/inmunología , Linfocitos T/trasplante , Animales , Línea Celular Tumoral , Humanos , Memoria Inmunológica , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Fenotipo , Linfocitos T/inmunología
20.
Oncogene ; 38(1): 17-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30072740

RESUMEN

During the evolution into castration or therapy resistance, prostate cancer cells reprogram the androgen responses to cope with the diminishing level of androgens, and undergo metabolic adaption to the nutritionally deprived and hypoxia conditions. AR (androgen receptor) and PKM2 (pyruvate kinase M2) have key roles in these processes. We report in this study, KDM8/JMJD5, a histone lysine demethylase/dioxygnase, exhibits a novel property as a dual coactivator of AR and PKM2 and as such, it is a potent inducer of castration and therapy resistance. Previously, we showed that KDM8 is involved in the regulation of cell cycle and tumor metabolism in breast cancer cells. Its role in prostate cancer has not been explored. Here, we show that KDM8's oncogenic properties in prostate cancer come from its direct interaction (1) with AR to affect androgen response and (2) with PKM2 to regulate tumor metabolism. The interaction with AR leads to the elevated expression of androgen response genes in androgen-deprived conditions. They include ANCCA/ATAD2 and EZH2, which are directly targeted by KDM8 and involved in sustaining the survival of the cells under hormone-deprived conditions. Notably, in enzalutamide-resistant cells, the expressions of both KDM8 and EZH2 are further elevated, so are neuroendocrine markers. Consequently, EZH2 inhibitors or KDM8 knockdown both resensitize the cells toward enzalutamide. In the cytosol, KDM8 associates with PKM2, the gatekeeper of pyruvate flux and translocates PKM2 into the nucleus, where the KDM8/PKM2 complex serves as a coactivator of HIF-1α to upregulate glycolytic genes. Using shRNA knockdown, we validate KDM8's functions as a regulator for both androgen-responsive and metabolic genes. KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells.


Asunto(s)
Adenocarcinoma/metabolismo , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/fisiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Hormonas Tiroideas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Transporte Activo de Núcleo Celular , Adenocarcinoma/patología , Animales , Benzamidas , Línea Celular Tumoral , Proteínas de Unión al ADN/fisiología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Proteína Potenciadora del Homólogo Zeste 2/genética , Técnicas de Silenciamiento del Gen , Glucólisis/genética , Xenoinjertos , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Mapeo de Interacción de Proteínas , ARN Interferente Pequeño/genética , Receptores Androgénicos/genética , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...